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Introduction

Investigations into derived categories of coherent sheaves on a smooth projective
varieties as a geometric invariant started with the seminal papers of Mukai and
Bondal-Orlov. (For basics see Huybrechts’ book [11].) In [4], Bondal-Orlov showed
that smooth projective varieties with ample canonical or anti-canonical bundle are
determined up to isomorphism by their derived categories. On the other hand,
Mukai [15] showed that this was not the case for Abelian Varieties by explicitly
constructing non-isomorphic derived equivalent Abelian Varieties. Further work
by many authors, led to examples of mostly Calabi-Yau varieties (varieties with
vanishing first Chern class) that are not-isomorphic but derived equivalent. In
case the variety is a curve or a surface (over C) [5] or is an Abelian variety [23],
it turned out that the number of non-isomorphic derived equivalent varieties to
a chosen variety is finite, although unbounded [10]. However, outside the case
of Calabi-Yau varieties, Lesieutre [13] has constructed an example of a rational
threefold which is derived equivalent to infinitely many non-isomorphic three-folds.
In general, the number of non-isomorphic derived equivalent smooth projective
varieties is countable [1]. This approach to understanding geometry via derived
categories got a major boost with the homological mirror symmetry conjecture of
Kontsevich [12], leading to immense interest in understanding and constructing
derived autoequivalence of smooth projective varieties over C. On the other hand,
the group of derived autoequivalences for smooth projective varieties over fields of
characteristic p is largely unexplored other than a few results for K3 surfaces in
[27] and for Abelian Varieties in [23], where it is shown that the group of derived
autoequivalences satisfies a short exact sequence.
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2 LIFTING AUTOMORPHISMS AS AUTOEQUIVALENCES

Any smooth projective variety X over an algebraically closed field admits the
following three kinds of standard derived autoequivalences via shifts of complexes,
automorphism of varieties and twists by line bundles

Z→ Aut(D(X)) n 7→ [n]
Aut(X)→ Aut(D(X)) σ 7→ σ∗ = (σ−1)∗

Pic(X)→ Aut(D(X)) L 7→ML, ML(F) := F ⊗ L.

All the three morphism are injective group homomorphisms. They sit inside
Aut(D(X)) as the subgroup Aut(X) n Pic(X)× Z.

We would like to compare this subgroup of autoequivalences between smooth
projective varieties over fields of characteristic p which admit a lift to characteristic
zero and their lifts. More precisely, let X be a smooth projective variety over
an algebraically closed field k of characteristic p such that there exists a smooth
projective scheme XV over V a discrete valuation ring which is possibly a finite
extension of the ring of Witt vectors W (k) over k. The generic fiber of XV gives a
smooth projective variety over a field K of characteristic zero. When such an XV

exists for a variety X, we say that X is liftable to characteristic zero or admits a
lift to characteristic zero. The obstruction to existence of such a lift is given by
H2(X, TX) [8]. Furthermore, given a lift XV of X, we can try to lift automorphisms
of X or line bundles on X or derived autoequivalences of X to XV . More precisely,
we can ask whether given an automorphism (resp. line bundle, resp. derived
autoequivalence) on X there exists an automorphism (resp. line bundle, resp.
derived autoequivalence) on XV such that on restriction to the special fiber X we
get back the automorphism (resp. line bundle, resp. derived autoequivalence) we
started with. In case a lift of the automorphism (resp. line bundle, resp. derived
autoequivalence) exists onXV , we can base change to the generic fiber and this gives
us a way to compare the automorphism group (resp. Picard group, resp. derived
autoequivalence group) of a smooth projective variety over a field of characteristic
p and the generic fiber of a lift of it, which is a smooth projective variety over
a field of characteristic zero. Even when the lift of the smooth projective exists,
lifting an automorphism (resp. line bundle, resp. derived autoequivalence) can be
obstructed. The obstruction for lifting an automorphism (resp. line bundle) on X
to some XV is given by H1(X,NΓ) (resp. H2(X,OX)), where NΓ is the normal
sheaf of the graph of the automorphism, see section 2 for more details. There exists
lot of examples of smooth projective varieties, starting from a surface which do not
lift see references in [8, Chapter 22] or that the variety lifts but automorphisms
(resp. line bundles) do not lift to some lift or to none of the lifts, see for example
[22], [6].

In case of smooth projective varieties X, Y over a field, Orlov [24] proved that
every derived equivalence is given by a Fourier-Mukai transform, i.e, given a derived

equivalence ϕ : D(X)
∼=−→ D(Y ), there exist a complex, say P ∈ D(X × Y ) giving a

functor of derived categories ΦP : D(X) → D(Y ) : F 7→ pY ∗(Rp∗XF ⊗L P ), where
pX (resp. pY ) is the projection from X×Y to X (resp. Y ) such that ϕ is isomorphic
to the functor ΦP . The functor ΦP is called a Fourier-Mukai functor and P is called
the Fourier-Mukai kernel of ΦP . It is only determined up to isomorphism in the
derived category. In the case of the three standard autoequivalences above the
Fourier-Mukai kernels are

Z→ Aut(D(X)) n 7→ [n] O∆[n]
Aut(X)→ Aut(D(X)) σ 7→ σ∗ = (σ−1)∗ OΓσ

Pic(X)→ Aut(D(X)) L 7→ML, ML(F) := F ⊗ L ∆∗L,

where ∆ is the diagonal embedding of X in X × X and Γσ is the graph of σ
embedded into X × X. We remark that the above result of Orlov is not known
for the case smooth projective schemes over a DVR or any other base other than
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a field, so we cannot conclude that every derived autoequivalence of a lift XV is
of Fourier-Mukai type. We note that lifting a Fourier-Mukai transform is equiva-
lent to lifting the Fourier-Mukai kernel on X × Y to some XV × YW . However, it
is not known whether one construct lifts of a Fourier-Mukai transform which on
D(XV ) are not of Fourier-Mukai type. Here, we are going to restrict to deforming
a derived autoequivalence of X as a Fourier-Mukai transform, and thus deform the
Fourier-Mukai kernel. Note that lifting an automorphism on X or the correspond-
ing Fourier-Mukai kernel of the derived autoequivalence on X ×X in the derived
category D(X×X) are different deformation problems. And we would like to com-
pare these deformation problems.

This paper answers in negative the following question: can one construct new
derived autoequivalences in characteristic zero using non-liftable automorphisms
from characteristic p (Cf., [27, Theorem 3.4])? In the sense that maybe one could
lift the derived autoequivalence associated to a non-liftable automorphism. Even
though, as it turns out, this is not the case, we show that in case of Abelian varieties,
the derived autoequivalence associated to an automorphism has more lifts than just
as a morphism.

The main idea of the result below is that when we lift an automorphism of X
as an autoequivalence, we basically lift, as a coherent sheaf, the structure sheaf
of the graph of the automorphism over the product X × X. The support of this
lifted sheaf will give a deformation of the graph of the automorphism and since the
deformation is flat, it has to come from a lift of the automorphism itself.

The results and arguments presented here most probably will be well known to
experts, but since we did not find them written down in literature, we note them
down here.

We break the paper into 2 main sections. In section 1 we recall the basics of
Abelian varieties that we would need for understanding their deformation theory,
derived autoequivalences and the dimensions of the necessary Hodge groups and
deformation spaces. Moreover, we observe that p-rank of an Abelian variety is a
derived invariant. Thus, every Abelian variety derived equivalent to an ordinary
Abelian variety is ordinary.

In section 2, we use the deformation-obstruction sequence for the corresponding
deformation functors as morphism, or as Fourier-Mukai transform and compare the
obstruction and deformation space dimensions.

The main result (Proposition 15, Theorem 11) can be stated as follows:

Theorem 1. An automorphism σ of an Abelian variety X of dimension g lifts
as a morphism to XV if and only if it lifts as a derived autoequivalence of D(X)
to an autoequivalence of D(XV ) as a Fourier-Mukai transform. Moreover, in case
it lifts, there is a g dimensional space of extra lifts of the automorphism σ as a
Fourier-Mukai transform. These extra lifts are derived auto-equivalences given by
composition of the lifted automorphism with twist by the lift of the structure sheaf
of the graph.

Lastly, we note that first part of the above result still holds for any smooth
projective variety over an algebraically closed field of characteristic p that admits
a lift to characteristic zero.

Notation: For an algebraically closed field k of positive characteristic, we will
denote by W (k) the ring of Witt vectors over k, sometimes also abbreviated as W .
K will denote a characteristic zero field.
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1. Abelian Varieties

In this section we discuss basic properties of Abelian varieties paying special
attention to elliptic curves, for which we prove the results first before going to the
general case. For basics and proofs of some of the following results, we refer the
reader to the excellent book by Mumford, [16].

1.1. Basic Properties and Deformations. Let A be a g-dimensional Abelian
variety over k, an algebraically closed field.

The Hodge groups Hq(A,ΩpA) are canonically isomorphic to ∧p[H0(A,Ω1
A)]⊗

∧q[H1(A,OA)], and dim H1(A,OA) = dim H0(A,ΩA) = g.
Lifting Abelian Varieties: Every Abelian variety defined over an algebraically

closed field of positive characteristic lifts to characteristic zero, see [18].
The formal deformation space of the lifting of an Abelian variety is given by

H1(A, TA), see [17, Proposition 6.15]. This has dimension g2. Since all formal
deformations need not be algebraic, the dimension of the algebraic deformations
will be smaller than g2 for g ≥ 2. However in the case of elliptic curves, note
that the algebraization of the lift is automatic because the obstruction to lifting an
(ample) line bundle lies in the second cohomology group, which vanishes as we are
in dimension 1 and we can use Grothendieck’s existence theorem to conclude.

To construct algebraic lifts for higher dimensional Abelian varieties, we lift a
polarization on the base Abelian variety along with it rather than lifting an ample
line bundle as in the of elliptic curves, (for a reason why we do this, see remark 14)
and then use Grothendieck’s Existence theorem to conclude. The dimension of the
local moduli space of algebraic (polarized) lifts is g(g + 1)/2, see [19] for details.
We remark that even though every Abelian variety can be lifted to characteristic
0, this is true only in the weak sense, i.e, not every Abelian variety would admit
a lift over the Witt ring but one would need a ramified extension of the Witt ring
to get a lift, see [22, Section 13]. However, ordinary Abelian varieties admit a lift
over the Witt ring.

Lifting Automorphisms as morphisms of Abelian Varieties: There exist
non-liftable automorphisms for Abelian varieties. Thus , the full automorphism
group of an Abelian variety need not lift. For an example see [22, Section 14].
The obstruction and deformation space of a particular automorphism have been
computed below in section 2.

For details about the structure of automorphism group (or more generally endo-
morphisms) of Abelian varieties, we refer the reader to [16, Chapter IV]. For the
explicit description of the group of automorphisms of an elliptic curve see Silverman,
[26, Chapter III, Theorem 10.1].

1.2. Derived Equivalent Abelian Varieties. Let A(resp. B) be an Abelian

variety and Â (resp. B̂) the dual Abelian variety, we will first recall the definition

of the group, U(A× Â, B× B̂), of isometric isomorphisms of A× Â to B× B̂. Note

that any morphism f : A× Â→ B × B̂ can be written as a matrix(
a b
c d

)
,

where the morphism a maps A to B, b maps Â to B, c maps A to B̂ and d maps

Â to B̂. Each morphism f determines two other morphisms f̂ and f̃ from B × B̂
to A× Â whose matrices are

f̂ =

(
d̂ b̂
ĉ â

)
, and f̃ =

(
d̂ −b̂
−ĉ â

)
.
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We define U(A×Â, B×B̂) as the subset of all isomorphisms from A×Â→ B×B̂
such that f−1 = f̃ and such an isomorphism is called isometric. In case A = B we
call an isometric isomorphism as an isometric automorphism and denote the group
of isometric automorphisms as U(A× Â). The following theorem of Orlov [23] and
Polishchuk [25], characterizes derived equivalences of two Abelian varieties using
isometric isomorphisms.

Theorem 2 ([11], Corollary 9.49). Two Abelian varieties A and B over an alge-
braically closed field k define equivalent derived categories, Db(A) ∼= Db(B) if and

only if there exists an isomorphism f : A× Â B−→ ×B̂ with f̃ = f−1:

Db(A) ∼= Db(B) ⇐⇒ U(A× Â, B × B̂).

In the case of elliptic curves, recall that the dual of an elliptic is isomorphic to
the curve itself, hence we have

Theorem 3 ([2] Theorem 2.2). Let E and F be two elliptic curves over an al-
gebraically closed field k such that Φ : Db(E) ∼= Db(F ) as a k-linear triangulated
categories, then there is an isomorphism of k-schemes E ∼= F .

The theorem 2 has an easy corollary, recall that the p-rank of an Abelian variety
over an algebraically closed field k is the rank i of the p-torsion group A[p] ∼=
(Z/pZ)i, where i ∈ [0, dim(X)], if char k = p otherwise i = 2g and an Abelian
variety over a field of characteristic p is called ordinary if its p-rank is equal to
dim(A).

Corollary 4. The p-rank of an Abelian variety is a derived invariant.

Proof. This follows from the easy observation that Â[p] = A[p] and then using the
theorem above as isomorphisms preserve p-torsion. �

This also follows from the result of Honigs [9] that derived equivalent Abelian
varieties are isogenous. This implies that any Abelian variety derived equivalent to
an ordinary Abelian variety is ordinary.

1.2.1. Derived Autoequivalence Group of Abelian Varieties. The derived autoequiv-
alence group of an Abelian Variety A over an algebraically closed field k satisfies
the following short exact sequence ([23], see [11, Proposition 9.55]):

(1) 0→ Z⊕ (A× Â)→ Aut(Db(A))→ U(A× Â)→ 0

Here U(A × Â) is the group of isometric automorphisms. Explicitly, the kernel
is generated by shifts [n], translations ta∗, and tensor products L ⊗ () with L ∈
Pic0(A).

2. Lifting automorphisms as autoequivalences

In this section we will compare the two ways of lifting an automorphism of an
Abelian variety and prove our main theorem. We begin by analyzing the case of
elliptic curves and then generalize to higher dimensional Abelian varieties.

Let E be an elliptic curve with j-invariant not equal to 0 or 1728 over k an
algebraically closed field of characteristic p > 0. Let σ : E → E be an automorphism
of E. This automorphism induces a Fourier-Mukai equivalence on the derived
categories given by the Fourier-Mukai kernel OΓ(σ), where OΓ(σ) is the push forward
of the structure sheaf of the graph of σ to X ×X considered as a coherent sheaf in
Db(E × E):

ΦOΓ(σ)
: Db(E)

∼=−→ Db(E).
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This reinterpretation of an automorphism as an perfect complex in the derived
category provides us with another way of deforming the automorphism. We can
now deform it as a perfect complex rather than deforming it just as a morphism.
However, since the complex we start with is just a coherent sheaf, the deformations
of it as a perfect complex will still be coherent sheaves, see [27, remark after proof
of Theorem 3.4]. Thus we can encode the two ways of lifting an automorphism in
the following deformation functors.

Let R be an Artinian local W (k)-algebra with residue field k, ER be an infinites-
imal deformation of E over R and consider the following two deformation functors:
first is the deformation functor of an automorphism as a morphism given
by

Faut :(Artin local W (k)-algebras with residue field k)→ (Sets)

R 7→ {Lifts of automorphism σ to R, i.e., pairs (ER, σR)},
(2)

where by lifting of automorphism σ overR we mean that there exists an infinitesimal
deformation ER of E and an automorphism σR : ER → ER which reduces to σ,
i.e., we have the following commutative diagram:

ER
σR // ER

E

OO

σ // E.

OO

The second one is the deformation functor of an automorphism as a coher-
ent sheaf, defined as follows:

Fcoh :(Artin local W (k)-algebras with residue field k)→ (Sets)

R 7→ {Deformations of OΓ(σ) to R}/iso,
(3)

where by deformations of OΓ(σ) to R we mean that there exists an infinitesimal
deformation YR of Y := E × E over R and a coherent sheaf FR, which is a defor-
mation of the coherent sheaf OΓ(σ) and OΓ(σ) is considered as a coherent sheaf on
E × E via the closed embedding Γ(σ) ↪→ E × E. Isomorphisms are defined in the
obvious way.

Observe that there is a natural transformation η : Faut → Fcoh given by

ηR : Faut(R) −→ Fcoh(R)

(σR : ER → ER) 7→ OΓ(σR)/ER × ER.
(4)

There is a deformation-obstruction long exact sequence connecting the two func-
tors.

Proposition 5 ([27]Proposition 3.6). Let i : Γ(σ) ↪→ E×E be a closed embedding with
E integral and projective scheme of finite type over k, σ : E → E an automorphism
and Γ(σ) its graph. Then there exists a long exact sequence

0→ H0(NΓ(σ))→Ext1E×E(OΓ(σ),OΓ(σ))→ H1(OΓ(σ))→
H1(NΓ(σ))→ Ext2E×E(OΓ(σ),OΓ(σ))→ . . . ,

(5)

where NΓ(σ) is the normal bundle of Γ(σ).

Remark 6. Note that the obstruction spaces for the functors Faut and Fcoh are
H1(NΓ(σ)) and Ext2

E×E(OΓ(σ),OΓ(σ)) respectively. See, for example, [8, Theorem
6.2, Theorem 7.3]. The same results give us the tangent spaces for the functors
Faut and Fcoh and they are H0(NΓ(σ)) and Ext1

E×E(OΓ(σ),OΓ(σ)).

Lemma 7. Let E be an elliptic curve over k and σ : E → E an automorphism of E,
the normal bundle of Γ(σ) : E → E × E is trivial.
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Proof. Use [7, Proposition II.8.20] for the case r = 1. �

Thus, for an elliptic curve E and an automorphism σ on it, we can compute the
obstruction and deformation spaces for Faut and they are TFaut = H0(E,NΓ(σ)) =

H0(E,OE) = k and ObsFaut = H1(E,NΓ(σ)) = H1(E,OE) = k.

Next, note that there is a canonical isomorphism ExtiE×E(OΓ(σ),OΓ(σ)) and

ExtiE×E(OE ,OE) given by σ, so to compute the obstruction and deformation spaces

for Fcoh, we need to compute ExtiE×E(OE ,OE). Recall that these groups are just
the Hochschild cohomology groups of the elliptic curve E and using Hochschild-
Kostant-Rosenberg (HKR) isomorphism [3, Theorem 1.3], we get that

Ext1E×E(OE ,OE) = H1(E,OE)⊕H0(E, T 1
E)

= H1(E,OE)⊕H0(E,OE) = k ⊕ k,

where the second equality follows as TE is a free sheaf and

Ext2E×E(OE ,OE) = H2(E,OE)⊕H1(E, TE)⊕H0(E, T 2
E)

= H2(E,OE)⊕H1(E,OE)⊕H0(E,∧2OE) = H1(E,OE) = k.

Thus dimensions of the Ext groups are 2 and 1 respectively. With this we have
computed the deformation and obstruction spaces for Fcoh, that is deformation as
a derived autoequivalence, what is left to show is that the lifted structure sheaf of
the graph does induce a derived autoequivalence. Indeed, let FW be the lift of the
structure sheaf of the graph OΓ(σ) to EW × EW , where EW is a lift of E over W .
Then using Nakayama ’s lemma, we note that ∆∗OEW → FW ◦F∨W and F∨W ◦FW →
∆∗OEW are quasi-isomorphism, where FW ◦ F∨W denotes the Fourier-Mukai kernel
of the composition ΦFW ◦ ΦF∨

W
, explicitly given by p13∗(p

∗
12(FW ) ⊗ p∗23(F∨W [1])),

for the case of elliptic curves. This argument also works for the higher dimensional
Abelian varieties case, although the shift in that case is by [g], where g is the
dimension of the Abelian variety. Now we are ready to prove first part of the main
result in the case of elliptic curves.

Proposition 8. For an elliptic curve E over an algebraically closed field k of char-
acteristic p > 0, any automorphism σ : E → E lifts to a lift EK of E over a field
K of characteristic zero, if and only if the Fourier-Mukai transform induced by the
structure sheaf of the graph of σ, OΓ(σ) ∈ Db(E×E), lifts as as an autoequivalence

to Db(EK)→ Db(EK).

Proof. From the long exact sequence 5 above, putting in the computations of the
groups from the preceding paragraph we get the exact sequence:

0→ k → k ⊕ k α−→ k
β−→ k

γ−→ k → . . . ,

where we note that α has to be a surjection (it cannot be zero, as the exactness
would then imply that k⊕k ∼= k), thereby making β a zero map and γ an injection.
Thus, we get our result. �

2.0.2. The case of higher dimensional Abelian varieties. For Abelian varieties of
dimension g ≥ 2 just the computations of obstruction-deformation sequence will be
insufficient to conclude that every automorphism lifts as a morphism if and only if
it lifts as an autoequivalence. However, is this case we observe that support of the
lifted Fourier-Mukai kernel sheaf is actually the graph of a lift of an automorphism.
This argument works for any smooth projective variety, not just only for Abelian
varieties, see remark 12 below.

Let A be an Abelian variety over k, an algebraically closed field of positive
characteristic and let σ : A → A be an automorphism of A, the definitions of the
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previous section can be transported directly over to higher dimensional Abelian
varieties from the case of elliptic curves.

Lemma 9. The normal bundle NΓ(σ) of Γ(σ) : A→ A× A is a free sheaf of rank g
on A, where g is the dimension of A.

Proof. This follows from the following maps of the short exact sequences (definition
of normal sheaf, [7, Chapter II.8 Page 182])

0 // TA/k // TA×A/k ⊗OA // NA/A×A // 0

0 // TA,e ⊗OA //

∼=

OO

(TA×A,(e,e) ⊗OA×A)⊗OA //

∼=

OO

NA,e ⊗OA //

∼=

OO

0,

where the last isomorphism is induced by the first two. �

Thus, we can compute the tangent and deformation spaces for Faut as H0(NA) =

kg and H1(NA) = kg
2

. Next we compute the Ext groups and use these computa-
tions to show that the exact sequence 5 is not enough anymore to conclude the main
result. We will be using HKR isomorphism to compute the Ext groups and over
fields of positive characteristic this isomorphism is only exists when the dimension
of the variety is less than the characteristic of the base field, we are forced to put
the assumption on characteristic. However, since we are only doing the computa-
tions to illustrate the failure of a method, by adding this assumption we do not lose
much.

Lemma 10. The groups Ext for Abelian variety A in the exact sequence 5 can be
computed as follows in case the characteristic of the base field k is greater than the
dimension of A:

Ext1(OA,OA) = k2g and Ext2(OA,OA) = k2g2−g.

Proof. We will again use HKR isomorphism [3], thus

Ext1(OA,OA) = HH1(A) = H1(A,OA)⊕H0(A, TA) = kg ⊕ kg

and

Ext2(OA,OA) = HH2(A) = H2(A,OA)⊕H0(A, T 2
A)⊕H1(X, TA)

= kg(g−1)/2 ⊕ kg(g−1)/2 ⊕ kg2

.

�

Thus the deformation obstruction long exact sequence 5 becomes

0→ kg → k2g α−→ kg → k2g γ−→ k2g2−g → . . . .

Note that now α does not have to be surjective to be non-zero. Thus we cannot
say that γ is injective. So we need a geometric argument.

Theorem 11. For any Abelian variety A over an algebraically closed field k of
characteristic p > 0, any automorphism σ : A → A lifts to a lift AK of E over a
field K of characteristic zero, if and only if the Fourier-Mukai transform induced by
the structure sheaf of the graph of σ, OΓ(σ) ∈ Db(A×A), lifts as an autoequivalence

to Db(AK)→ Db(AK).

Proof. Since deformation of a morphism as an autoequivalence is just the deforma-
tion of the structure sheaf of the graph as a coherent sheaf in the derived category,
to prove the above statement we need to show that the support of the lifted co-
herent sheaf actually gives us a lift of the automorphism. This follows easily from
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[27, Lemma 3.5] and the fact that given a coherent sheaf F on a smooth projec-
tive variety, the support of the lifted coherent sheaf FW gives a deformation of the
support of F . �

Remark 12. Note that the above argument also works in the case of any smooth
projective variety admitting a lifting to characteristic zero.

2.1. Are there extra lifts of automorphisms as autoequivalences? First,
let us remark that for the case of Abelian varieties, we have the following exact
sequence:

Lemma 13. For any Artin local W (k)-algebra R with residue field k, any Abelian
scheme A over Spec(R) = S and for any surjection R � R′ of local Artin W (k)-
algebras such that A′ = A⊗R R′, there is an exact sequence:

0→ HomS(A,A)→ Hom′S(A′, A′).

Proof. This follows from [17, Corollary 6.2] and

HomS(A,A) //

��

Homk(A0, A0)

HomS′(A′, A′).

66

�

This implies that Faut is actually a subfunctor of FA0
, deformations of A0 as a

scheme, and lift of every automorphism is unique upto lift of the base scheme. On
the other hand, one can easily see that this is not true for the deformation functor
of coherent sheaves, i.e., given a fixed lift of a base Abelian scheme as a scheme,
the lift of a coherent sheaf to the fixed lift will not be unique. It will be a torsor
under the Ext1 group. In the particular case we are working with, note that the
number of distinct lifts of the base Abelian variety will be precisely g-dimensional
and the Ext1 group in our case is 2g dimensional.

Remark 14. This is the reason that for constructing algebraizable lifts of Abelian
varieties, we do not just lift an line bundle but instead we choose to lift a polariza-
tion, which is actually a morphism of the Abelian variety to its dual variety. Thus
using again [17, Corollary 6.2], we get that the deformation functor for polarized
Abelian varieties is a subfunctor of deformation functor for Abelian varieties.

Thus for Abelian varieties, the answer to the question posed in the heading is
yes. There will be a g-dimensional space of extra lifts of automorphism as autoe-
quivalences and we have

Proposition 15. The extra lifts of the automorphism as an autoequivalence are given
by composition of the lifted automorphism with twist by the lift of the structure sheaf
of the graph.

Note that a lift of the structure sheaf of the graph of σ : A → A will be just a
line bundle  LW on the graph of the lifted automorphism σW : AW → AW which
reduces to the structure sheaf of the graph OΓ(σ).

2.1.1. Comparison with the deformations of the induced automorphism on product
A × Â. Recall from Theorem 2, that to every derived equivalence ΦF : Db(A) →
Db(A) one can associate an isometric automorphism fF of A× Â (in case of ellip-
tic curve E an automorphism of E × E). This association gives a corresponding
transformation on the level of deformation functors, i.e., a natural transformation
between the deformation functors Fcoh,F → Faut,fF , where F is a (shifted) coherent
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sheaf [11, Proposition 9.53]. Note that the association of F with fF was not a 1-1
correspondence, therefore the natural transformation is not injective at the level
of tangent spaces of Fcoh,F and Faut,fF . This fits well with the discrepancy in the
number of lifts of F as an sheaf (which is not unique) and fF , which is unique for
a chosen lift of the base Abelian variety as its deformation functor is a subfunctor
for the deformation functor of Abelian varieties as schemes.
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